
Authorship Attribution of Obfuscated Binaries

Kamran Morovati, Natalia Stakhanova
Faculty of Computer Science, University of New Brunswick

This research aims at identifying obfuscation resistant features of Windows executables at the binary level. These features potentially

can facilitate the authorship attribution of unknown programs. The main objective of this study is an analysis of obfuscators

effectiveness in order to hide the author's programming style at the binary level. In this study, we have investigated the efficiency of

features such as op-code frequencies, op-code n-grams, API function calls, features driven from program’s control flow graph and PE

header information in order to detect the obfuscation resistant ones.

Abstract

Software Authorship Attribution
The goal: attribution of unknown
software binaries to an author.
Applications:

• Plagiarism detection
• Resolving legal disputes over

authorship of work in courts of law
• Authorship of malware, etc. for

identification of cybercriminals.
• Software Forensics
• …

• Source codes from

Google Code Jam

competition

• Source codes for 13

different programming

challenges.

• 10 different authors

• Total number of 540

binaries (including 9

different obfuscated

versions of each

sample)

Methodology

• Generation of

Windows binary files

• Compiled with Visual

Studio 2015

• No debugging and

code alteration to

preserve the author’s

coding style

• Generating binaries

using ConfuserEX

software

• 9 different

obfuscation

techniques
• CFG obfuscation

• Invalid Metadata

Insertion

• Variable renaming

• Anti debug

• Anti dump

• Resource

protection…

• Op-code

Frequencies

• Op-code n-grams

• API Function Calls

• PE Header Info

• CFG

• #Nodes/Edges

• #Terminal Nodes

• #Isolated Nodes

• Average Node

degree

• # sub graphs

• Database Creation

• Use of statistical

tests

• MANOVA test

• Fisher test

• Tukey test

• Opcode Patterns

• Calculating

Opcode TF-IDF

• Noise Reduction

• Feature Selection

• Classification
• SVM

• Decision Tree

• KNN

• Naive Bayes

• Evaluation

• Accuracy

• Precision

• Recall

• ROC

Motivation
Source code is typically obfuscated for
protection against detection and reverse
engineering of binaries.

Research objective

Identifying obfuscation resistant features at
binary level.

Research Findings
• Use of obfuscators can not fully

protect the authors.
• Opcode frequencies and Opcode

n-grams are obfuscation resistant
• Choosing a correct classifier and

configuring it properly results in better
accuracy.

• API calls, PE header info and CFG
related parameters could not
contribute much in case of author
identification .

Scope and Limitations

• PE files for Windows Platform

• .NET assemblies

• C# Programing Language

• We collected our samples from Google
Code Jam 2013 competition.

• Samples includes submitted codes from
both expert and novice programmers.

• 54 projects from 10 different authors in
13 different categories were selected
and obfuscated using several methods.

Data Set

• Zero-R classifier (Classification solely by chance) accuracy = ~14%

• Random Forests classifier in combination with Bagging technique yielded the best
accuracy (~93%).

Op-code frequencies
Op-code n-grams

• Our observations showed the op-code
2-grams TF-IDF values were better inputs
for classifiers.

• The Naïve Bayes classifier yielded the best
accuracy (94.25%).

• K-NN stands in 2nd place (84% Accuracy).
K=3, (K greater than 3 did not produce

higher accuracy)
Distance Measurement = Cosine

Similarity

• Analysis of the Frequent Op-codes/API sets
and Association Rule Mining.

• Sequential pattern analysis of op-codes and
API calls with Time Series and Hidden
Markov Models (H.M.M)

Future Directions

